How to Solve an SAS Triangle

When working with an SAS triangle—a triangle where two sides and the included angle are known—it is essential to follow a structured approach. The Side-Angle-Side (SAS) method involves first finding the unknown side and then determining the other two angles.

Solving SAS Triangles

For example, consider a triangle where Angle A = 49°, side b = 5, and side c = 7. The first step is to use the Law of Cosines to calculate the missing side a:

a2=b2+c2−2bc⋅cos⁡(A)a² = b² + c² – 2bc \cdot \cos(A)a2=b2+c2−2bc⋅cos(A)

By substituting the given values:

a2=52+72−2×5×7×cos⁡(49°)a² = 5² + 7² – 2 \times 5 \times 7 \times \cos(49°)a2=52+72−2×5×7×cos(49°)

Solving this equation step by step:

· 52=255² = 2552=25, 72=497² = 4972=49

· 2×5×7=702 \times 5 \times 7 = 702×5×7=70

· cos⁡(49°)≈0.6561\cos(49°) \approx 0.6561cos(49°)≈0.6561

a2=25+49−(70×0.6561)=28.075a² = 25 + 49 – (70 \times 0.6561) = 28.075a2=25+49−(70×0.6561)=28.075

Taking the square root,

a≈5.30a ≈ 5.30a≈5.30

(rounded to two decimal places).

Now that side a is found, we proceed to determine the other two angles.

Using the Law of Sines to Find the Smaller Angle

The Law of Sines states:

sin⁡(A)a=sin⁡(B)b=sin⁡(C)c\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}asin(A) =bsin(B) =csin(C)

For Angle B:

sin⁡(B)=b⋅sin⁡(A)a\sin(B) = \frac{b \cdot \sin(A)}{a}sin(B)=ab⋅sin(A)

Substituting values:

sin⁡(B)=5×sin⁡(49°)5.298\sin(B) = \frac{5 \times \sin(49°)}{5.298}sin(B)=5.2985×sin(49°)

Since sin(49°)  0.7547:

sin⁡(B)=5×0.75475.298=0.7122\sin(B) = \frac{5 \times 0.7547}{5.298} = 0.7122sin(B)=5.2985×0.7547 =0.7122

Applying the inverse sine function (sin¹):

B≈45.4°(rounded to one decimal place)B ≈ 45.4° \quad \text{(rounded to one decimal place)}B≈45.4°(rounded to one decimal place)

Finding Angle C

Since the three angles in a triangle must add up to 180°:

C=180°−(49°+45.4°)=85.6°C = 180° – (49° + 45.4°) = 85.6°C=180°−(49°+45.4°)=85.6°

Thus, Angle C  85.6° (rounded to one decimal place).

Example 2

Consider another SAS triangle with:

· p = 6.9, q = 2.6, R = 117°

To find side r, use the Law of Cosines:

r2=p2+q2−2pq⋅cos⁡(R)r² = p² + q² – 2pq \cdot \cos(R)r2=p2+q2−2pq⋅cos(R)

Substituting the values:

r2=(6.9)2+(2.6)2−2×6.9×2.6×cos⁡(117°)r² = (6.9)² + (2.6)² – 2 \times 6.9 \times 2.6 \times \cos(117°)r2=(6.9)2+(2.6)2−2×6.9×2.6×cos(117°) r2=47.61+6.76−(35.88×(−0.4535))r² = 47.61 + 6.76 – (35.88 \times (-0.4535))r2=47.61+6.76−(35.88×(−0.4535)) r2=47.61+6.76+18.36=70.659r² = 47.61 + 6.76 + 18.36 = 70.659r2=47.61+6.76+18.36=70.659

Taking the square root:

r≈8.41r ≈ 8.41r≈8.41

(rounded to two decimal places).

Now, applying the Law of Sines to find Angle P:

sin⁡(P)=p⋅sin⁡(R)r\sin(P) = \frac{p \cdot \sin(R)}{r}sin(P)=rp⋅sin(R)

Substituting values:

sin⁡(P)=6.9×sin⁡(117°)8.41\sin(P) = \frac{6.9 \times \sin(117°)}{8.41}sin(P)=8.416.9×sin(117°)

Since sin(117°)  0.8910:

sin⁡(P)=6.9×0.89108.41=0.7313\sin(P) = \frac{6.9 \times 0.8910}{8.41} = 0.7313sin(P)=8.416.9×0.8910 =0.7313

Taking the inverse sine (sin¹):

Since the three angles in a triangle must add up to 180°:

C=180°−(49°+45.4°)=85.6°C = 180° – (49° + 45.4°) = 85.6°C=180°−(49°+45.4°)=85.6°

Thus, Angle C  85.6° (rounded to one decimal place).

Example 2

Consider another SAS triangle with:

· p = 6.9, q = 2.6, R = 117°

To find side r, use the Law of Cosines:

r2=p2+q2−2pq⋅cos⁡(R)r² = p² + q² – 2pq \cdot \cos(R)r2=p2+q2−2pq⋅cos(R)

Substituting the values:

r2=(6.9)2+(2.6)2−2×6.9×2.6×cos⁡(117°)r² = (6.9)² + (2.6)² – 2 \times 6.9 \times 2.6 \times \cos(117°)r2=(6.9)2+(2.6)2−2×6.9×2.6×cos(117°) r2=47.61+6.76−(35.88×(−0.4535))r² = 47.61 + 6.76 – (35.88 \times (-0.4535))r2=47.61+6.76−(35.88×(−0.4535)) r2=47.61+6.76+18.36=70.659r² = 47.61 + 6.76 + 18.36 = 70.659r2=47.61+6.76+18.36=70.659

Taking the square root:

r≈8.41r ≈ 8.41r≈8.41

(rounded to two decimal places).

Now, applying the Law of Sines to find Angle P:

sin⁡(P)=p⋅sin⁡(R)r\sin(P) = \frac{p \cdot \sin(R)}{r}sin(P)=rp⋅sin(R)

Substituting values:

sin⁡(P)=6.9×sin⁡(117°)8.41\sin(P) = \frac{6.9 \times \sin(117°)}{8.41}sin(P)=8.416.9×sin(117°)

Since sin(117°)  0.8910:

sin⁡(P)=6.9×0.89108.41=0.7313\sin(P) = \frac{6.9 \times 0.8910}{8.41} = 0.7313sin(P)=8.416.9×0.8910 =0.7313

Taking the inverse sine (sin¹):

P≈47.0°P ≈ 47.0°P≈47.0°

Finally, Angle Q:

Q=180°−(117°+47.0°)=16.0°Q = 180° – (117° + 47.0°) = 16.0°Q=180°−(117°+47.0°)=16.0°

Thus, Angle Q  16.0°.

Application: Stadium Example

Consider a stadium designed as a regular pentagon, where each side is 920 feet. The distance from the center to the corners forms isosceles triangles, dividing the pentagon into 5 equal sections.

Each angle at the center is:

360°5=72°\frac{360°}{5} = 72°5360° =72°

Using the Law of Cosines, the side connecting two corners is calculated as:

approximately 782 feet or 783 feet.\text{approximately } 782 \text{ feet} \text{ or } 783 \text{ feet}.approximately 782 feet or 783 feet.

Area of a Triangle with 2 Sides and an Included Angle

The area of an SAS triangle is found using the formula:

Area=12bcsin⁡(A)\text{Area} = \frac{1}{2} bc \sin(A)Area=21 bcsin(A)

For ABC, where AB = 5, BC = 8, and ∠ABC = 60°:

Area=12×5×8×sin⁡(60°)\text{Area} = \frac{1}{2} \times 5 \times 8 \times \sin(60°)Area=21 ×5×8×sin(60°)

Since sin(60°) = √3/2:

Area=12×5×8×32=103\text{Area} = \frac{1}{2} \times 5 \times 8 \times \frac{\sqrt{3}}{2} = 10\sqrt{3}Area=21 ×5×8×23 =103

Thus, the area is 103 square units.

For a quadrilateral BCED, we break it into two triangles. Given AC = 30 and ∠BAC = 20°, the area of ADE can be found similarly.

By following this method, we can systematically solve SAS triangles in various real-world applications, ensuring accuracy through structured calculations.

Leave a Comment

Your email address will not be published. Required fields are marked *